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Abstract

This paper deals with inference and prediction for multiple correlated time series, where
one also has the choice of using a candidate pool of contemporaneous predictors for each
target series. Starting with a structural model for time series, we use Bayesian tools for
model fitting, prediction and feature selection, thus extending some recent works along
these lines for the univariate case. The Bayesian paradigm in this multivariate setting
helps the model avoid overfitting, as well as captures correlations among multiple target
time series with various state components. The model provides needed flexibility in se-
lecting a different set of components and available predictors for each target series. The
cyclical component in the model can handle large variations in the short term, which may
be caused by external shocks. Extensive simulations were run to investigate properties such
as estimation accuracy and performance in forecasting. This was followed by an empirical
study with one-step-ahead prediction on the max log return of a portfolio of stocks that
involve four leading financial institutions. Both the simulation studies and the extensive
empirical study confirm that this multivariate model outperforms three other benchmark
models, viz. a model that treats each target series as independent, the autoregressive inte-
grated moving average model with regression (ARIMAX), and the multivariate ARIMAX
(MARIMAX) model.

Keywords: Multivariate Time Series, Feature Selection, Bayesian Model Averaging,
Cyclical Component, Estimation and Prediction

1. Introduction

The analysis of “Big Data” through the application of a new breed of analytical tools for
manipulating and analyzing vast caches of data, is one of the cutting edge new areas. As a
byproduct of the extensive use of the internet in collecting data on economic transactions,
such data are growing exponentially every day. According to (Varian, 2014) and the ref-
erences therein, Google has 30 trillion URLs and crawls over 20 billion of those each day.
Conventional statistical and econometric techniques become increasingly inadequate to deal
with such big data problems. For a good introduction to the new trends in data science, see
( Blei and Smyth, 2017). Machine Learning as a field of computer science has strong ties to
mathematical optimization and delivers methods, theory and applications, giving comput-
ers the ability to learn without being explicitly programmed (see a classical book, Mohri
et al., 2012). Machine Learning indeed helps in developing high-performance computer
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tools, which often provide useful predictions in the presence of challenging computational
needs. However, the result is one that we might call “pure prediction” and is not necessarily
based on substantive knowledge. Also, typical assumptions such as the data being inde-
pendent and identically (or at least independently) distributed, are not satisfactory when
dealing with time stamped data, which is driven by multiple “predictors” or “features”.
We need to employ time series analysis for such series of data that are dependent, such
as macroeconomic indicators of the national economy, enterprise operational management,
market forecasting, weather and hydrology prediction.

Our focus here is on new techniques that work well for feature selection problems in
time series applications. Scott and Varian (2014, 2015) introduced and further explored the
Bayesian Structural Time Series (BSTS) model, a technique that can be used for feature
selection, time series forecasting, nowcasting, inferring causal relationships (see Brodersen
et al., 2015 and Peters et al., 2017), among others. One main ingredient of the BSTS model
is that the time series aspect is handled through the Kalman filter (see Harvey, 1990; Durbin
and Koopman, 2002; Petris et al., 2009) while taking into account the trend, seasonality,
regression, and other common time series factors. The second aspect is the “spike and slab”
variable selection, which was developed by George and McCulloch (1997) and Madigan and
Raftery (1994), by which the most important regression predictors are selected at each
step. The third aspect is the Bayesian model averaging (see Hoeting et al., 1999), which
combines the feature selection results and prediction calculation. All these three parts have
natural Bayesian interpretations and tend to play well together so that the resulting BSTS
model discovers not only correlations but also causations in the underlying data. Some
excellent related literature includes, but is not limited to the following: Dy and Brodley
(2004); Cortes and Vapnik (1995); Guyon and Elisseeff (2003); Koo et al. (2007); Bach et al.
(2013); Keerthi and Lin (2003); Nowozin and Lampert (2011); Krishnapuram et al. (2005);
Caron et al. (2006); Csató and Opper (2002).

In this paper, we extend the BSTS model to the multivariate target time series with
various components, and label it the Multivariate Bayesian Structural Time Series (MBSTS)
model. For instance, the MBSTS model can be used to explicitly model the correlations
between different stock returns in a portfolio through the covariance structure specified by
Σt, see Equation (1). In this model, we allow a cyclical component with a shock damping
parameter to specially model the influence of a shock to the time series, in addition to a
standard local linear trend component, a seasonal component, and a regression component.
One motivation for this is provided by the 2007–2008 financial crisis to the stock market. In
examples with simulated data, the properties of our model such as estimation and prediction
accuracy is investigated. As an illustration, through an empirical case study, we predict the
max log returns over 5 consecutive business days of a stock portfolio with 4 stocks: Bank of
America (BOA), Capital One Financial Corporation (COF), J.P. Morgan (JPM) and Wells
Fargo (WFC), using domestic Google trends and 8 stock technical indicators as predictors.

Extensive analysis on both simulated data and real stock market data verifies that
the MBSTS model gives much better prediction accuracy compared to the univariate BSTS
model, the autoregressive integrated moving average with regression (ARIMAX) model, and
the multivariate ARIMAX (MARIMAX) model. Some of the reasons for this can be seen in
the following: the MBSTS model is strong in forecasting since it incorporates information
of different components in the target time series, rather than merely historical values of the
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same component; the Bayesian paradigm and the MCMC algorithm can perform variable
selection at the same time during model training and thus prevent overfitting, even if some
spurious predictors are added into the candidate pool; the MBSTS model benefits from
taking correlations among multiple target time series into account, which helps boost the
forecasting power and is a significant improvement over the univariate BSTS model.

The rest of the paper is organized as follows. In Section 2, we build the basic model
framework. Extensive simulations are carried out in Section 3 to examine how the model
performs under various conditions. In Section 4, an empirical study on the stock portfolio
is done to show how well our model performs with real-world data. Section 5 concludes
with some final remarks.

2. The MBSTS Model

In this section, we introduce the MBSTS model including model structure, state compo-
nents, prior elicitation and posterior inference. Then we describe the algorithm for training
the model and performing forecasts. In the sequel, the symbol “ ∼ ” and the superscript
“(i)” will denote a column vector and the i-th component of a vector respectively, such as

a m× 1 vector ỹt = [y
(1)
t , · · · , y(m)

t ]T .

2.1 Structural Time Series

Structural time series models belong to state space models for time series data given by the
following set of equations:

ỹt = ZTt αt + ε̃t, ε̃t ∼ Nm(0,Σt), (1)

αt+1 = Ttαt +Rtηt, ηt ∼ Nq(0, Qt), (2)

α0 ∼ Nd(µ0,Σ0). (3)

Equation (1) is called the observation equation, as it links the m×1 vector ỹt of observations
at time t with a d× 1 vector αt denoting the unobserved latent states, where d is the total
number of latent states for all entries in ỹt. Equation (2) is called the transition equation
because it defines how the latent states evolve over time. The model matrices Zt, Tt, and
Rt typically contain unknown parameters and known values which are often set as 0 and
1. Zt is a d ×m output matrix, Tt is a d × d transition matrix, and Rt is a d × q control
matrix. The m × 1 vector ε̃t denotes observation errors with a m ×m variance-covariance
matrix Σt, and ηt is a q-dimensional system error with a q × q state diffusion matrix Qt,
where q ≤ d. Note that any linear dependencies in the state vector can be moved from Qt
to Rt, hence Qt can be set as a full rank variance matrix.

Structural time series models constructed in terms of components have a direct inter-
pretation. For example, one may consider the classical decomposition in which a series can
be seen as the sum of trend, season, cycle and regression components. In general, the model
in state space form can be written as:

ỹt = µ̃t + τ̃t + ω̃t + ξ̃t + ε̃t, ε̃t
iid∼ Nm(0,Σε), t = 1, 2 . . . , n, (4)
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where ỹt, µ̃t, τ̃t, ω̃t, ξ̃t and ε̃t are m-dimension vectors, representing target time series,
linear trend component, seasonal component, cyclical component, regression component
and observation error terms respectively. Based on the state space form, αt is the collection
of these components, namely αt = [µ̃Tt , τ̃

T
t , ω̃

T
t , ξ̃

T
t ]T . Here Σε is a m×m matrix, positive

definite and is assumed to be constant over time for simplicity. Structural time series mod-
els allow us to examine the time series and flexibly select suitable components for trend,
seasonality, and either static or dynamic regression. In the current model, all state compo-
nents are assembled independently, with each component yielding an additive contribution
to ỹt. The flexibility of the model allows us to include different model components for each
target series.

2.2 Components of State

The first component is a local linear trend. The specification of a time series model for the
trend component varies according to the features displayed by the series under investigation
and any prior knowledge. The most elementary structural model deals with a series whose
underlying level changes over time. Moreover, it also sometimes displays a steady upward
or downward movement, suggesting to incorporate a slope or a drift into the model for the
trend. The resulting model, a generalization of the local linear trend model where the slope
exhibits stationarity instead of obeying a random walk, is expressed in the form as:

µ̃t+1 = µ̃t + δ̃t + ũt, ũt
iid∼ Nm(0,Σµ), (5)

δ̃t+1 = D̃ + ρ̃(δ̃t − D̃) + ṽt, ṽt
iid∼ Nm(0,Σδ), (6)

where δ̃t and D̃ are m-dimension vectors. δ̃t is the expected increase in µ̃t between times t
and t+ 1, so it can be thought as the slope at time t and D̃ is the long-term slope. The pa-
rameter ρ̃ is a m×m diagonal matrix, whose diagonal entries 0 ≤ ρii ≤ 1 for i = 1, 2, · · · ,m,

represent the learning rates at which the local trend is updated for {y(i)t }i=1,2,··· ,m. Thus,
the model balances short-term information with long-term information. When ρii = 1, the
corresponding slope becomes a random walk.

The second component is the one that captures seasonality. One frequently used model
in the time domain is:

τ
(i)
t+1 = −

Si−2∑
k=0

τ
(i)
t−k + w

(i)
t , w̃t = [w

(1)
t , · · · , w(m)

t ]T
iid∼ Nm(0,Στ ), (7)

where Si represents the number of seasons for y(i) and a m-dimension vector τ̃t denotes
their joint contribution to the observed target time series ỹt. When we add a seasonal
component, Si seasonal effects are set in the state space form for y(i). However, only one
seasonal effect has error term based on equation (7) and other effects are represented by
itself in a deterministic equation. More specifically, the part of the transition matrix Tt
representing the seasonal effects is an (Si− 1)× (Si− 1) matrix with −1 along the top row,
1 along the subdiagonal and 0 elsewhere. In addition, the expectation of the summation of
Si seasonal effects for y(i) is zero with variance equal to the i-th diagonal element of Στ .
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For each target series y(i), the model allows for various seasonal components with differ-
ent periods as shown in equation (7). For instance, we might include a seasonal component
with Si = 7 to capture day-of-the-week effect for target series y(i), and Sj = 30 indicating
day-of-the-month effect for another target series y(j) when modeling daily data. The corre-
sponding seasonal transition matrix in state space setting is a 6 × 6 matrix and a 29 × 29
matrix with nonzero error variance for y(i) and y(j) respectively.

The third component is the one accounting for cyclical effects in the series. In eco-
nomics, the term “business cycle” broadly refers to recurrent, not exactly periodic, devia-
tions around the long-term path of the series. A model with a cyclical component is capable
of reproducing commonly acknowledged essential features, such as the presence of strong
autocorrelation, recurrence and alternation of phases, dampening of fluctuations, and zero
long run persistence. A stochastic trend model of a seasonally adjusted economic time se-
ries does not capture the short-term movement of the series by itself. Including a serially
correlated stationary component, the short-term movement could be captured, and this is
the model incorporating cyclical effect (see Harvey et al., 2007). The cycle component is
postulated as:

ω̃t+1 = %̃ĉos(λ)ω̃t + %̃ŝin(λ)ω̃?t + κ̃t, κ̃t
iid∼ Nm(0,Σω),

ω̃?t+1 = −%̃ŝin(λ)ω̃t + %̃ĉos(λ)ω̃?t + κ̃?t , κ̃?t
iid∼ Nm(0,Σω),

(8)

where %̃, ŝin(λ), ĉos(λ) are m ×m diagonal matrices with diagonal entries equal to %ii (a
damping factor for target series y(i) such that 0 < %ii < 1), sin(λii) where λii = 2π/qi is the
frequency with qi being a period such that 0 < λii < π, and cos(λii) respectively. When
λii is 0 or π, the model degenerates to the AR(1) process. The damping factor should be
strictly less than one for stationary purpose. When the damping factor is bigger than one,
there will be no restriction for the cyclical movement, resulting in extending the amplitude
of the cycle.

These three time series components are illustrated in Figure 1. The big difference
between the cyclical component and the seasonal component is the damping factor. The
amplitude of the cyclical component will decay as time goes by, which can be applied to
target time series affected by external shocks. Here Σµ, Σδ, Στ and Σω are m×m variance-
covariance matrices for error terms of different time series components, and for simplicity
we assume they are diagonal.

The fourth component is the regression component with static coefficients written as
follows:

ξ
(i)
t = βTi x

(i)
t . (9)

Here ξ̃t = [ξ
(1)
t , · · · , ξ(m)

t ]T is the collection of all elements in the regression component.

For target series y(i), x
(i)
t = [x

(i)
t1 , . . . , x

(i)
tki

]T is the pool of all available predictors at time

t, and βi = [βi1, . . . , βij , . . . , βiki ]
T represents corresponding static regression coefficients.

All predictors are supposed to be contemporaneous with a known lag, which can be easily
incorporated by shifting the corresponding predictors in time.
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Figure 1: Simulated time series components include generalized linear trend, seasonality
and cycle, generated by equations (5), (6), (7) and (8) with ρ̃ = [0.6], D̃ = [0],
Σµ = [0.52], Σδ = [0.082], S = 30, Στ = [0.012], λ = π/10, %̃ = [0.97] and
Σω = [0.012], to show different contributions in explaining variations in target
time series.

2.3 Spike and Slab Regression

In feature selection, a high degree of sparsity is expected, in the sense that coefficients of the
vast majority of predictors are expected to be zero. A natural way to represent sparsity in
the Bayesian paradigm is through the spike and slab coefficients. One advantage of working
in a fully Bayesian setting is that we do not need to commit to a fixed set of predictors.

2.3.1 Matrix Representation

In order to assign appropriate prior distributions to parameters, we first combine ỹt, µ̃t, τ̃t, ω̃t,
ε̃t into a n × m matrix as follows: Y = [ỹ1, . . . , ỹt, . . . , ỹn]T , M = [µ̃1, . . . , µ̃t, . . . , µ̃n]T ,
T = [τ̃1, . . . , τ̃t, . . . , τ̃n]T , W = [ω̃1, . . . , ω̃t, . . . , ω̃n]T and E = [ε̃1, . . . , ε̃t, . . . , ε̃n]T . Then the
model can be written in a long matrix form as follows:

Ỹ = M̃ + T̃ + W̃ +Xβ + Ẽ, (10)

where Ỹ = vec(Y ), M̃ = vec(M), T̃ = vec(T ), W̃ = vec(W ), Ẽ = vec(E), and X, β are
written as:

X =


X1 0 0 . . . 0
0 X2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Xm

 , β =


β1
β2
...
βm

 , (11)

6



Multivariate Bayesian Structural Time Series Model

where Xi being a n × ki matrix, representing all observations of ki candidate predictors
for y(i), which is all observations of the i-th target series. The regression matrix X is of
dimension (nm × K) with K =

∑m
i=1 ki. Moreover, Xi and Xj can be the same or only

contain a portion of common predictors. The regression coefficients for y(i) denoted as
βi = [βi1, . . . , βij , . . . , βiki ]

T is a ki-dimension vector. Reformulating the model in this way
facilitates the mathematical derivation in selecting a different set of available predictors at
each iteration for y(i).

2.3.2 Prior distribution and elicitation

We define γij = 1 if βij 6= 0, and γij = 0 if βij = 0. Then γ = [γ1, . . . , γm] where
γi = [γi1, . . . , γiki ]. Denote βγ as the subset of elements of β where βij 6= 0, and let Xγ be
the subset of columns of X where γij = 1. The spike prior is written as:

γ ∼
m∏
i=1

ki∏
j=1

π
γij
ij (1− πij)1−γij , i = 1, · · · ,m, (12)

where πij is the prior inclusion probability of the j-th predictor for the i-th target time
series. Equation (12) is often further simplified by setting all the πij for j = 1, 2, · · · , ki
as the same value πi for y(i) if prior information about effects of specific predictors on
each target series are not available. With sufficient prior information available, assigning
different subjectively determined values to πij might provide more robust results without a
great amount of computational burden. An easy way to elicit πi is to ask researchers for an
“expected model size”, so that if one expects qi nonzero predictors for y(i), then πi = qi/ki,
where ki is the total number of candidate predictors for the i-th target series. Under some
circumstances, πij could be set as 0 or 1, for some specific predictors of y(i), forcing certain
variables to be excluded or included. The spike prior can be specified by researchers in
different distributional forms.

The natural conjugate prior for the multivariate model with the same set of predictors
has the conjugate prior on β depending on Σε. However, the multivariate extension with
different set of predictors in each equation will destroy the conjugacy (Rossi et al. (2012)).
Conjugate priors such as the normal distribution and the inverse Wishart distribution can
still be used in a nonconjugate context, since models can be conjugate conditional on some
other parameters. In order to obtain this conditional conjugate, we stack up the regression
equations into one shown in equation (11). A simple slab prior specification is to make β
and Σε prior independent (see Griffiths, 2003):

p(β,Σε, γ) = p(β|γ)p(Σε|γ)p(γ),

β|γ ∼ NK(bγ , A
−1
γ ),

Σε|γ ∼ IW (v0, V0),

(13)

where bγ is the vector of prior means and Aγ = κXT
γ Xγ/n is the full-model prior in-

formation matrix, with κ the number of observations worth of weight on the prior mean
vector bγ . If XT

γ Xγ is not positive definite due to perfect collinearity among predictors,

Aγ = κ(ωXT
γ Xγ + (1 − ω)diag(XT

γ Xγ))/n can be used instead to guarantee propriety.
Given analysts’ specification, Aγ can be set in other forms. Here, IW (v0, V0) is the inverse
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Wishart distribution with v0 the number of degrees of freedom and V0 a m×m scale matrix.
Although these priors are not conjugate, they are conditionally conjugate.

Equation (13) is the so-called “slab” because one can choose the prior parameters to
make it only very weakly informative (close to flat), conditional on γ. The vector bγ encodes
our prior expectation about the value of each element of βγ . In practice, one usually sets
b = 0. The values of v0 and V0 can be set by asking analysts for an expected R2 form the
regression, and a number of observations worth of weight v0, which must be greater than
the dimension of ỹt plus one. Then V0 = (v0 − m − 1) ∗ (1 − R2) ∗ Σy, where Σy is the
variance-covariance matrix for multiple target time series Y .

Prior distributions of other variance-covariance matrices can be expressed as:

Σu ∼ IW (wu,Wu), for u ∈ {µ, δ, τ, ω}. (14)

By the assumption that all components are independent of each other, the prior distributions
in multivariate form can reduced to their univariate counterparts since the matrices are
diagonal. In other words, each diagonal entry of these matrices follows inverse gamma
distributions as introduced in BSTS.

2.3.3 Posterior Inference

By the law of total probability, the full likelihood function is given by

p(Ỹ ?, β,Σε, γ) = p(Ỹ ?|β,Σε, γ)× p(β|γ)× p(Σε|γ)× p(γ), (15)

p(Ỹ ?|β,Σε, γ) ∝ |Σε|−n/2 exp

(
−1

2
(Ỹ ? −Xγβγ)T (Σ−1ε ⊗ In)(Ỹ ? −Xγβγ)

)
, (16)

p(β|γ) ∝ |Aγ |1/2 exp

(
−1

2
(βγ − bγ)TAγ(βγ − bγ)

)
, (17)

p(Σε|γ) ∝ |Σε|−(v0+m+1)/2 exp

(
tr(−1

2
V0Σ

−1
ε )

)
, (18)

where Ỹ ? = Ỹ −M̃−T̃−W̃ is the multiple target time series Ỹ with time series components
(trend, seasonality and cycle) subtracted out. Conditional on Σε, one can introduce a normal
prior, standardize the observations to remove correlation, and produce a posterior. However,
we cannot find a convenient prior to integrate out Σε from this conditional posterior. We
tackle this issue by transforming equation Ỹ ? = Xβ + Ẽ into a system with uncorrelated
errors, using the square root of the variance-covariance matrix, Σε = UTU . That is, if we
multiply ((U−1)T ⊗ In) both sides of the equation, by the fact that (U−1)TΣεU

−1 = I, the
transformed system has uncorrelated errors:

Ŷ ? = X̂β + Ê, Ŷ ? = ((U−1)T ⊗ In)Ỹ ?, X̂ = ((U−1)T ⊗ In)X,

Var(Ê) = E((U−1)T ⊗ In)ẼẼT ((U−1)T ⊗ In)] = Im ⊗ In.
(19)

Then the full conditional distribution of β|Ŷ ?,Σε, γ can be expressed as:

p(β|Ŷ ?,Σε, γ) ∝ exp

(
−1

2
((Ŷ ? − X̂γβγ)T (Ŷ ? − X̂γβγ) + (βγ − bγ)TAγ(βγ − bγ))

)
. (20)
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Let us combine the two terms in exponential:

(Ŷ ? − X̂γβγ)T (Ŷ ? − X̂γβγ) + (βγ − bγ)TAγ(βγ − bγ)

=βTγ (X̂T
γ X̂γ +Aγ)βγ − βTγ (X̂T

γ Ŷ
? +Aγbγ)− (X̂T

γ Ŷ
? +Aγbγ)Tβγ + Const

=(βγ − β̃γ)T (X̂T
γ X̂γ +Aγ)(βγ − β̃γ) + Const,

(21)

where β̃γ = (X̂T
γ X̂γ +Aγ)−1(X̂T

γ Ŷ
? +Aγbγ). Then, a normal prior for βγ is conjugate with

the conditional likelihood for the transformed system:

β|Ŷ ?,Σε, γ ∼ NK(β̃γ , (X̂
T
γ X̂γ +Aγ)−1). (22)

As Aγ gets smaller, the prior becomes flatter. The mean β̃γ can be recognized as the
generalized least squares estimator.

The posterior of Σε|Ŷ ?, β, γ is in the inverted Wishart form. To see this, firstly recall
that given βγ we can observe or compute the errors Ẽ. Then the problem becomes a
standard inference problem of a variance-covariance matrix using a multivariate normal
sample. From equations (15), (16), (17) and (18), we know that

p(Σε|Ỹ ?, β, γ) ∝ |Σε|−(n+v0+m+1)/2 exp

(
−1

2
{ẼTγ (Σ−1ε ⊗ In)Ẽγ + tr(V0Σ

−1
ε )}

)
, (23)

where Ẽγ = Ỹ ? − Xγβγ . The terms in the exponential part can be expressed in a trace
form:

ẼTγ (Σ−1ε ⊗ In)Ẽγ = vec(Eγ)T (Σ−1ε ⊗ In)vec(Eγ) = tr(ETγ EγΣ−1ε ), (24)

where Eγ = Y ? − X?
γBγ , Y ? = Y −M − T −W , X?

γ = [X1, X2, . . . , XM ]γ is a (n × K)
matrix, and Bγ is a (K ×m) matrix expressed as follows:

Bγ =


β1 0 0 . . . 0
0 β2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . βm


γ

. (25)

Then the full conditional distribution of Σε is inverted Wishart as follows:

p(Σε|Ỹ ?, β, γ) ∝ |Σε|−(n+v0+m+1)/2 exp

(
−1

2
{tr[(ETγ Eγ + V0)Σ

−1
ε ]}

)
, (26)

Σε|Ỹ ?, β, γ ∼ IW (v0 + n,ETγ Eγ + V0). (27)

Note that, if we let the prior precision goes to zero, the posterior on Σε would center over
the sum of squared residuals matrices.

Since there is no conjugacy in this prior setting, we can not get an analytic solution
of the marginal distribution of γ. However, the conditional distribution of γ|Σε, Ỹ

? can be
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derived by the properties of conditional conjugacy. The joint probability density function
p(Σε, Ỹ

?, γ) can be obtained as follows:

p(Σε, Ỹ
?, γ) =

∫ +∞

−∞
p(β,Σε, Ỹ

?, γ)dβ

∝|Σε|−(v0+m++n+1)/2 exp

(
−1

2
{tr(V0Σ−1ε ) + (Ŷ ?)T Ŷ ?}

)
× |Aγ |1/2p(γ)

|X̂T
γ X̂γ +Aγ |1/2

exp

(
−1

2
{bTγAγbγ − ZTγ (X̂T

γ X̂γ +Aγ)−1Zγ}
)
,

(28)

where Zγ = (X̂T
γ Ŷ

?+Aγbγ). Then the conditional distribution of γ|Σε, Ỹ
? can be expressed

as:

p(γ|Σε, Ỹ
?) = C(Σε, Ỹ

?)
|Aγ |1/2p(γ)

|X̂T
γ X̂γ +Aγ |1/2

exp

(
−1

2
{bTγAγbγ − ZTγ (X̂T

γ X̂γ +Aγ)−1Zγ}
)
,

(29)
where C(Σε, Ỹ

?) is a normalizing constant that only depends on Σε and Ỹ ?. Note that,
matrices needed to be computed here are of low dimension, in the sense that equation
(29) places positive probabilities on coefficients being zero, leading to the sparsity of these
matrices. In general, as a feature of the full posterior distribution, sparsity in this model
enables equation (29) to be evaluated in an inexpensive way.

Next we need to derive conditional posterior of Σu for u ∈ {µ, δ, τ, ω}. Given the
draws of states, parameters drawn are straightforward for all state components except
the static regression coefficients. All time series components that solely depend on their
variance parameters would translate their draws back to the error terms and accumulate
sums of squares. For the reason that inverse Wishart distribution is the conjugate prior of
a multivariate normal distribution with known mean and variance-covariance, the posterior
distribution is still inverse Wishart distributed

Σu|u ∼ IW (wu + n,Wu +AAT ), for u ∈ {µ, δ, τ, ω}, (30)

where A = [Ã1, . . . , Ãn] is a m×n matrix, representing a collection of residues of each time
series component.

2.4 Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods are a class of algorithms to sample from a
probability distribution based on constructing a Markov chain that has the desired distri-
bution as its equilibrium distribution. The state of the chain after a number of steps is then
used as a sample from the desired distribution. The quality of the sample improves as an
increasing function of the number of steps.

2.4.1 Model Training

Let θ = (Σµ,Σδ,Στ ,Σω) denotes the set of state component parameters. The posterior
distribution of the model can be simulated by a Markov chain Monte Carlo algorithm given
in Algorithm 1. Looping through the five steps yields a sequence of draws ψ̃ = (α, θ, γ,Σε, β)

10
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from a Markov chain with stationary distribution p(ψ̃|Y ), the posterior distribution of ψ̃
given Y .

Algorithm 1 MBSTS Model Training

1: Draw the latent state α = (µ̃, δ̃, τ̃ , ω̃) from given model parameters and Ỹ , namely
p(α|Ỹ , θ, γ,Σε, β), using the posterior simulation algorithm from Durbin and Koopman
(2002).

2: Draw time series state component parameters θ given α, namely simulating θ ∼
p(θ|Ỹ , α) based on equation (30).

3: Loop over i in an random order, draw each γi|γ−i, Ỹ , α,Σε, namely simulating γ ∼
p(γ|Ỹ ?,Σε) one by one based on equation (29), using the stochastic search variable
selection (SSVS) algorithm from George and McCulloch (1997).

4: Draw β given Σε, γ, α and Ỹ , namely simulating β ∼ p(β|Σε, γ, Ỹ
?) based on equation

(22).
5: Draw Σε given γ, α, β and Ỹ , namely simulating Σε ∼ p(Σε|γ, Ỹ ?, β) based on equation

(27).

2.4.2 Target Series Forecasting

As typically in Bayesian data analysis, forecasts using our model are based on the posterior
predictive distribution. Given draws of model parameters and latent states from their
posterior distribution, we can draw samples from the posterior predictive distribution. Let
Ŷ represents the set of values to be forecast. The posterior predictive distribution of Ŷ can
be expressed as follows:

p(Ŷ |Y ) =

∫
p(Ŷ |ψ̃)p(ψ̃|Y )dψ̃ (31)

where ψ̃ is the set of all the model parameters and latent states randomly drawn from
p(ψ̃|Y ). We can draw samples of Ŷ from p(Ŷ |ψ̃) by simply iterating equations (5), (6), (7),
(8) and (9) to move forward from initial values of states α with initial values of parameters
θ, β and Σε. In the one-step-ahead forecast, we draw samples from the multivariate normal

distribution with mean equal to µ̃n + δ̃n +
∑S−2

k=0 τ̃n−k + %̃ĉos(λ)ω̃n + %̃ŝin(λ)ω̃?n + β(k)xn+1

and variance equal to Σε + Σµ + Στ + Σω. Therefore, the samples drawn in this way have
the same distribution as those simulated directly from the posterior predictive distribution.

Note that, the predictive probability density is not conditioned on parameter estimates,
and inclusion or exclusion of predictors with static regression coefficients, all of which have
been integrated out. Thus, through Bayesian model averaging, we commit neither to any
particular set of covariates which helps avoid arbitrary selection, nor to point estimates
of their coefficients which prevents overfitting. By the multivariate nature in our MBSTS
model, the correlations among multiple target series are naturally taken into account, when
sampling for prediction values of several target series. The posterior predictive density in
equation (31), is defined as a joint distribution over all predicted target series, rather than as
a collection of univariate distributions, which enables us to properly forecast multiple target
series as a whole instead of predicting them individually. This is crucial, especially when

11
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generating summary statistics, such as mean and variance-covariance from joint empirical
distribution of forecast values.

3. Application to Simulated Data

In order to investigate the properties of our model, in this section, we analyze computer-
generated data through a series of independent simulations. We generated multiple data
sets with different time spans, local trends, number of regressors, dimensions of target
series and correlations among several target series to analyze three aspects of generated
data: accuracy in parameter estimation, ability to select the correct variables, and forecast
performance of the model.

3.1 Generated Data

To check whether the estimation error and estimation standard deviation decrease as sample
size increases, we built four different models in equation (32), each of which generates two
target time series data with different numbers of observations (50, 100, 200, 400, 800,
1600, 3200). These data sets are simulated using latent states and a static regression
component with four explanatory variables, one of which has no effect on each target series
with zero coefficient. Specifically, each target series was generated with a different set of
state components and explanatory variables, while the insignificant variable for each target
series is not the same.

The latent states were generated using a local linear trend component with and without a
global slope, a seasonality component with period equal to four, and/or a cyclical component
with λ = π/10 for both target series. All initial values are drawn from normal distribution
with a mean of zero. The detailed model description is presented as follows:

ỹt = α̃t +BT x̃t + ε̃t

Model 1 : ỹt = µ̃t +BT x̃t + ε̃t α̃t = µ̃t

Model 2 : ỹt = µ̃′t +BT x̃t + ε̃t α̃t = µ̃′t

Model 3 : ỹt = µ̃′t + τ̃t +BT x̃t + ε̃t α̃t = µ̃′t + τ̃t

Model 4 : ỹt = µ̃′t + τ̃t + ω̃t +BT x̃t + ε̃t α̃t = µ̃′t + τ̃t + ω̃t

(32)

ε̃t
iid∼ N2(0,Σε) Σε =

[
1.1 0.7
0.7 0.9

]
B =

[
2 −1 −0.5 0
−1.5 4 0 2.5

]T
x̃t = [xt1, xt2, xt3, xt4]

T

xt1
iid∼ N(5, 52) xt2

iid∼ Pois(10) xt3
iid∼ B(1, 0.5) xt4

iid∼ N(−2, 52)

(33)

µ̃t+1 =

[
µ1,t+1

µ2,t+1

]
=

[
µ1,t
µ2,t

]
+

[
δ1,t
0

]
+

[
u1,t
u2,t

]
δ1,t

iid∼ N(δ1,t−1, 0.082)

[
u1,t
u2,t

]
iid∼ N2

([
0
0

]
,

[
0.52 0

0 1

]) (34)
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µ̃′t+1 =

[
µ′1,t+1

µ′2,t+1

]
=

[
µ′1,t
µ′2,t

]
+

[
δ′1,t
δ′2,t

]
+

[
u1,t
u2,t

]
[
δ′1,t
δ′2,t

]
iid∼ N2

([
0.6δ′1,t−1 + 0.4 ∗ 0.02

δ′2,t−1

]
,

[
0.082 0

0 0.162

]) (35)

τ̃t+1 =

[
τ1,t+1

τ2,t+1

]
=

[
−
∑2

k=0 τ1,t−k
0

]
+

[
w1,t

0

]
w1,t

iid∼ N(0, 0.012) (36)

ω̃t+1 =

[
ω1,t+1

ω2,t+1

]
=

[
0

0.5 ∗ cos(λ22)ω2,t

]
+

[
0

0.5 ∗ sin(λ22)ω
?
2,t

]
+

[
0
κ2,t

]
ω̃?t+1 =

[
ω?1,t+1

ω?2,t+1

]
=

[
0

−0.5 ∗ sin(λ22)ω2,t

]
+

[
0

0.5 ∗ cos(λ22)ω
?
2,t

]
+

[
0
κ?2,t

]
κ2,t

iid∼ N(0, 0.012) κ?2,t
iid∼ N(0, 0.012).

(37)

To check the model performance with more than two series, two more data sets were
generated by Model 5 and Model 6 according to equations (38) and (39), respectively, where
for simplicity we consider latent states only include a generalized local linear trend with
and without a global slope. The specific settings are given below:

Model 5 : ỹt = µ̃′′t +BT x̃t + ε̃t ε̃t
iid∼ N3(0,Σε)

B =

 2 −1 −0.5 0
−1.5 4 0 2.5

3 0 3.5 −2

T Σε =

1.1 0.7 0.7
0.7 0.9 0.7
0.7 0.7 1.0


µ̃′′t+1 =

µ′′1,t+1

µ′′2,t+1

µ′′3,t+1

 =

µ′′1,tµ′′2,t
µ′′3,t

+

δ′′1,tδ′′2,t
δ′′3,t

+

u1,tu2,t
u3,t


δ′′1,tδ′′2,t
δ′′3,t

 iid∼ N3

(0.6δ′′1,t−1 + 0.4 ∗ 0.02

δ′′2,t−1
0.3δ′′3,t−1 + 0.7 ∗ 0.01

 ,
0.082 0 0

0 0.162 0
0 0 0.122

)
u1,tu2,t
u3,t

 iid∼ N3

(0
0
0

 ,
0.52 0 0

0 1 0
0 0 0.72

).

(38)

13



Qiu,Jammalamadaka and Ning

Model 6 : ỹt = µ̃′′′t +BT x̃t + ε̃t ε̃t
iid∼ N4(0,Σε)

B =


2 −1 −0.5 0
−1.5 4 0 2.5

3 0 3.5 −2
0 1 1.5 −0.5


T

Σε =


1.1 0.7 0.7 0.7
0.7 0.9 0.7 0.7
0.7 0.7 1.0 0.7
0.7 0.7 0.7 1.2



µ̃′′′t+1 =


µ′′′1,t+1

µ′′′2,t+1

µ′′′3,t+1

µ′′′4,t+1

 =


µ′′′1,t
µ′′′2,t
µ′′′3,t
µ′′′4,t

+


δ′′′1,t
δ′′′2,t
δ′′′3,t
δ′′′4,t

+


u1,t
u2,t
u3,t
u4,t



δ′′′1,t
δ′′′2,t
δ′′′3,t
δ′′′4,t

 iid∼ N4

(
0.6δ′′′1,t−1 + 0.4 ∗ 0.02

δ′′′2,t−1
0.3δ′′′3,t−1 + 0.7 ∗ 0.01

0.5δ′′′4,t−1

 ,


0.082 0 0 0
0 0.162 0 0
0 0 0.122 0
0 0 0 0.102


)


u1,t
u2,t
u3,t
u4,t

 iid∼ N4

(
0
0
0
0

 ,


0.52 0 0 0
0 1 0 0
0 0 0.72 0
0 0 0 0.62


)
.

(39)

Model 7 was used to generate data to examine the accuracy in Bayesian point and
interval estimations and covariates inclusion probabilities. The model is described as follows:

Model 7 : ỹt = µ̃′t + τ̃t + ω̃t + diag(BT x̃t) + ε̃t ε̃t
iid∼ N2(0,Σε)

B =

[
2 −1 −0.5 0 1.5 −2 0 3.5
−1.5 4 0 2.5 −1 0 −3 0.5

]T
x̃t =

[
xt1 xt2 xt3 xt4 xt5 xt6 xt7 x?t8
xt1 x?t2 xt3 xt4 xt5 xt6 xt7 xt8

]T
xt5

iid∼ N(−5, 52) xt6
iid∼ Pois(15) xt7

iid∼ Pois(20) xt8
iid∼ N(0, 102),

(40)

where x?2, x
?
5 and x?8 are variables whose values were obtained by rearranging a partial

portion of data values for x2, x5 and x8, and the diag() operator extracts diagonal entries
in the matrix to form a column vector. In Model 7, the first target series was generated
by (x1, x2, x3, x4, x5, x6, x7, x

?
8) and the second target series was generated by (x1, x

?
2,

x3, x4, x5, x6, x7, x8). Therefore, when explanatory variables (x1, x
?
2, x3, x4, x

?
5, x6, x7,

x?8) are used for model training, regression coefficients of x?2 (resp. x?5) for the first target
series generation are expected not to reflect the true linear relationship between y(1) and
x2 (resp. x5). Similarly, regression coefficients of x?5 (resp. x?8) for the second target series
generation are expected not to reflect the true linear relationship between y(2) and x5 (resp.
x8). In sum, each distinct target series has a unique pattern generated by a particular set of
explanatory variables and state components (the first target series affected by seasonality,
not cyclical effect; the second target series affected by cyclical effect, not seasonality). Then
we apply the MBSTS model on generated data sets to study its different properties.
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3.2 Estimation and Model Selection Accuracy

From three perspectives, we explored properties of our model. More specifically, they include
how the number of observations affects Bayesian estimation accuracy, how likely the 90%
credible interval contains the true values of coefficients, and how possible the model selects
the most important explanatory variables and ignores variables that do not contribute as
desired, with results given in Figures 2, 3 and 4, respectively.

With the advent of the “big data” era, a huge amount of time series data are available
to be analyzed from various sources. In the first analysis, we want to check whether a
larger sample size improves the model performance in terms of Bayesian point estimation
accuracy. After model training, we drew 2000 samples for each coefficient to be estimated
during MCMC iterations. To reduce the influence of initial values on posterior inferences,
we discarded an initial portion of the Markov chain samples. Specifically based on trial and
error, the first 200 drawn samples were removed and the rest of them were used to build a
sample posterior distribution for each parameter.

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 2: Estimation error for regression coefficients with different sample size. (a), (b),
(c) and (d) display results using generated data sets by four different models in
equation (32).
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Based on the theory of Bayesian estimation, the sample mean from posterior distribution
is considered to be the best point estimator for unknown parameters in terms of the mean
squared error. We firstly consider the estimation error defined as the absolute value of
difference between the true value and its Bayesian point estimate. The plots in Figure 2
illustrate how estimation errors of coefficients change as the sample size increases. The
first target series was generated not using covariate x4, while the second target series was
generated not using covariate x3, as shown in equation (33). Those zero coefficients are not
displayed in these line plots. Figure 2 shows that only the estimation error for coefficient
β31 goes down dramatically when sample size expands in these four cases. The remaining
estimation errors stay almost the same regardless of different sample sizes, which implies
that the number of observations significantly affect only the point estimation accuracy of
coefficients for binary variables, not for numerical or ordinal variables. Even if only a small
amount of data is available, our approach still performs well when binary or factor variables
are not involved in the analysis.

(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

Figure 3: Standard error for regression coefficients with different sample size. Here, stan-
dard error is the empirical standard deviation of draws from equation (22). (a),
(b), (c) and (d) display results using generated data sets by four different models
in equation (32).
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The sample standard error, defined as the posterior standard deviation of the regression
coefficient, is used to illustrate the spread of the Bayesian estimator. To further explore
other properties of the posterior distribution of draws, the standard errors were checked
for each coefficient with different sample sizes. Figure 3 shows that all standard errors
for covariates’ coefficients except β31 gradually decline with a larger amount of data. The
standard error for coefficients β31 peaks when the number of observations is 100 for Model
1 or 200 for models 2, 3 and 4, and then begin to drop very sharply. In general, a larger
sample size helps shrink the standard errors of all coefficients, especially for binary or factor
covariates’ coefficients, as one would expect. In other words, collecting more data allows
us to shrink the dispersion of the posterior empirical distribution from Monte Carlo draws,
and hence build a narrower credible interval.

(a) Boxplot with 90% Credible Interval (b) Inclusion Probability

Figure 4: Empirical posterior distribution of estimated coefficients and indicators. (a) Box
plots of the difference between draws from equation (22) and true values of re-
gression coefficients. The top and bottom correspond to the 95% upper bound
and 5% low bound, respectively. (b) Bar plot of empirical inclusion probabil-
ity illustrates the proportion of Monte Carlo draws with γij = 1. The red color
shows positive estimated values of regression coefficients, while gray color displays
negative values.

In the second analysis, we assess the coverage properties of the posterior credible inter-
vals based on the empirical posterior distribution of each covariate’s coefficients. In other
words, the 90% credible interval contains the ground truth in 90% of the simulations. In
Model 7 equation (40), x?8 instead of x8 was used to generate the first target series y(1),
and x?2 instead of x2 was used to generate the second target series y(2). Therefore, when
the explanatory variables (x1, x

?
2, x3, x4, x

?
5, x6, x7, x

?
8) are used for model training, the

resulting coefficients β21 and β51 for y(1) as well as β52 and β82 for y(2), cannot reveal a true
linear relationship. The box plot in Figure 4 displays the empirical posterior distribution of
estimated coefficients for significant explanatory variables whose values were not randomly
shuffled, and indicates that the true values of all coefficients are within 90% credible inter-
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vals. In addition, we can see that the 90% credible interval of binary covariates’ coefficients
is much wider than others, due to their larger standard errors.

In the third analysis, one important property of our model is to reduce data dimension
by variable selection in model training. In Figure 4, the bar plot of empirical inclusion
probabilities based on the proportion of MCMC draws shows a clear picture of which vari-
ables are used to generate data and which are the ones with shuffled values. For the first
target series y(1), the empirical inclusion probabilities of covariates x1, x3, x6 and x8 as one
or close to one indicate that they were all, or almost all, selected during MCMC iterations,
which is exactly how the data set was generated; the covariates x4 and x7 with zero co-
efficients indicate that they are rarely selected during MCMC iterations. Some covariates
with partially shuffled values, such as x2 and x5, are more likely be selected than those
with no effect on this target series, but they are not so important as x1, x3, x6 and x8.
Similar striking results were achieved for the second target series. Moreover, we can see
that as expected, the inclusion probability of x?5 is just 0.17 (resp. 0.27) for the first (resp.
second) target series. In a word, our MBSTS model is good at variables selection, even if
the variation of each target series is explained by a different set of explanatory variables.

It is worth emphasizing that our model performs very well in terms of estimation ac-
curacy and variables selection ability, even if each target series has a different set of latent
states and explanatory variables from others. However, all preceding results depend on the
assumption that the model structure remains intact throughout the modeling period. In
other words, even though the model is built on the idea of multiple non-stationary compo-
nents such as a time-varying local trend, seasonal effect, and potentially dynamic regression
coefficients, the structure itself remains unchanged. If the model structure does change over
time (e.g. local trend disappears or the static regression coefficients become dynamic), the
estimation accuracy may suffer. Therefore, a preliminary data exploration and acquiring a
background knowledge about the data set before applying our model is suggested, although
it has the strength in allowing users to adjust the model components flexibly for each target
series.

3.3 Model Performance Comparison

The generated data sets were split into a certain period of training data and a subsequent
period of testing set. The standard approach would use the training data to develop the
model that would then be applied to obtain predictions for the testing period. We use
a growing window approach, which simply adds one new observation in the test set to
the existing training set, obtaining a new model with fresher data and then constantly
forecasting a new value in the test set.

To evaluate the performance of the MBSTS model, we use three other models: autore-
gressive integrated moving average model with regression (ARIMAX), multivariate ARI-
MAX (MARIMAX), and the BSTS model, as benchmark models. We replace ARIMAX
and MARIMAX with seasonal ARIMAX (SARIMAX) and multivariate seasonal ARIMAX
(MSARIMAX), when seasonality exists. In this study, applying the growing window ap-
proach, all models were trained by the training set and then were used to make a one-step-
ahead prediction. More specifically, the univariate BSTS and ARIMAX were trained for
each target time series individually, but MBSTS and MARIMAX were applied on the mul-
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(a) Model 1 (b) Model 2

(c) Model 3 (d) Model 4

(e) Model 5 (f) Model 6

Figure 5: Cumulative absolute one-step-ahead prediction error for generated multiple target
series containing different components. (a)-(f) display results using generated
data sets by six different models in equations (32), (38) and (39). Three other
benchmark models (BSTS, ARIMAX and MARIMAX) are also trained and used
to make a prediction.

tidimensional series data set as a whole. Then we compared the performances of the other
three models with that of MBSTS in terms of cumulative one-step ahead prediction errors.
The prediction error at each step PEt is defined by summing up the absolute values of the
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differences between the true values and their own predicted values over all target time se-

ries, i.e.
∑m

i=1 |y
(i)
t − ŷ

(i)
t |. Figure 5 and Figure 6 are generated to demonstrate our model’s

comparison performance under the influence of complexity in different kinds and numbers of
multiple target time series, and under various correlations (ρ = 0, 0.2,−0.3, 0.5,−0.6, 0.8),
respectively.

(a) ρ = 0 (b) ρ = 0.2

(c) ρ = −0.3 (d) ρ = 0.5

(e) ρ = −0.6 (f) ρ = 0.8

Figure 6: Cumulative absolute one-step-ahead prediction error for generated multiple target
series with different correlations. (a)-(f) display results using generated data
sets by equation (40) with various correlation coefficients in Σt. Other three
benchmark models (BSTS, ARIMAX and MARIMAX) are also trained and used
to make a prediction.
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Figure 5 shows cumulative one-step-ahead prediction errors of six time series models,
which were trained using a set of data sets with each containing one thousand observations
generated by equations (32), (38) and (39). We can see that the MBSTS model does not
show an obvious advantage in the first two plots, since the generated target time series have
only a local trend or a linear trend. However, the MBSTS model beats other benchmark
models in plot 3 and plot 4, where the target series contain seasonality or cycle components.
Clearly, the BSTS or MBSTS model has a strong ability to capture seasonality and cycle
embodied in the series. The performance evaluations in plot 5 (three target time series) and
plot 6 (four target time series) demonstrate the forecast advantage of our MBSTS model
over other benchmark models, even with an increased number of target series. In general,
the multivariate models outperform their corresponding univariate ones due to the influence
of correlations among multiple target time series. Moreover, BSTS is better than ARIMAX,
and MBSTS outperforms all other models, thanks to the Bayesian model averaging and time
series structure of target series.

Figure 6 provides a clear picture of an impressive fact: the higher correlation among
multiple target time series, the better performance of the MBSTS model over other models.
Generally, the MBSTS model outperforms the traditional ARIMAX or MARIMAX model
for the reason that averaging algorithm helps hedge against selecting the “wrong” set of
predictors in prediction steps. The gaps of cumulative prediction errors between models in a
multivariate version and their univariate counterparts increase as multiple target time series
have stronger correlations. Therefore, it is better to model multiple target time series as
a whole by MBSTS rather than model them individually by BSTS, especially when strong
correlations appear in the multiple target time series, as illustrated in Figure 6

4. Application to Empirical Data

Predicting stock prices (for example, of a group of leading companies) is extremely impor-
tant to Wall Street practitioners for investment and/or risk management purposes. In the
following, we forecast the future values of stock portfolio return using the proposed MBSTS
model and compare its performance with three other benchmark models: BSTS, ARIMAX
and MARIMAX. In this section, we analyze the data of Bank of America (BOA), Capital
One Financial Corporation (COF), J.P. Morgan (JPM) and Wells Fargo (WFC). The daily
data sample is from 11/27/2006 to 11/03/2017 and obtained from Google Finance.

4.1 Target Time Series

We perceive the stock as worthwhile in terms of trading when its future price is predicted
to vary more than p% of its current price. In this context, we forecast the trend of stock
movements in the next k(= 5) transaction days, which is especially helpful when liquidation
risk is in consideration given a sign of sale, and useful to avoid a large amount purchase
driving up the stock prices given a sign of buying. In this study, we provide daily predictions
sequentially of the overall price dynamics in the next k transaction days.

Following Torgo (2011), we approximate the daily average price as: P̄t = (Ct+Ht+Lt)/3,
where Ct, Ht and Lt are the close, high and low quotes for day t respectively. However,
instead of using the arithmetic returns, we are interested in the log return Vt defined as
Vt = {log(P̄t+j/Ct)}kj=1.We consider the indicator variable yt = max{v ∈ Vt}, the maximum
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Figure 7: The candlestick chart and max log return. The top panel displays a candlestick
chart of BOA from Aug 21st to Nov 3rd, containing information such as open
and closing quotes. The bottom panel shows corresponding max log returns over
the next five transaction days, which is the target time series.

value of log returns over the next k transaction days. A high positive value of yt means that
there is at least one future daily price that is much higher than today’s close quote, indicating
potential opportunities to issue a buy order, as we predict the prices will rise. A trivial value
of yt around zero can be seen as the sign of no action that should be taken at this moment.
In this study, we calculated yt for four leading companies in the financial industry (BOA,
COF, JPM and WFC), whose stock prices are affected by economic activities. Visualization
of a part of the daily prices time series and their corresponding yt indicators for BOA can
be seen in Figure 7.

4.2 Predictors

To better capture market information and different properties of the stock price time se-
ries and to facilitate the forecasting task, we use the following fundamental and technical
predictors.

Fundamental Part Fundamental analysis claims that markets may incorrectly price a
security in the short run but will eventually correct it. Profits can be achieved by purchasing
the undervalued security and then waiting for the market to recognize its “mistake” and
bounce back to the fundamental value. Since macroeconomy has a significant effect on the
financial market, economical analysis plays an important role in fundamental analysis in
giving a precise stock return prediction.
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For economic analysis, we know that it is difficult to collect important economic indi-
cators on a daily basis. However, starting from the year 2004, Google has been collecting
the daily volume of searches related to various aspects of macroeconomics. This database
is publicly available as “Google Domestic Trends”. In a recent study, Preis et al. (2013)
showed correlations between Google domestic trends and the equity market. In this study,
we use the Google domestic trends data as a representation of the public interest in various
macroeconomic factors, and include 27 domestic trends which are listed in Table 1 with
their abbreviations.

Trend Abbr. Trend Abbr.

Advertising & marketing advert Air travel airtvl
Auto buyers auto Auto financing autoby
Automotive autofi Business & industrial bizind
Bankruptcy bnkrpt Commercial Lending comlnd

Computers & electronics comput Construction constr
Credit cards crcard Durable goods durble
Education educat Finance & investing invest

Financial planning finpln Furniture furntr
Insurance insur Jobs jobs

Luxury goods luxury Mobile & wireless mobile
Mortgage mtge Real estate rlest

Rental rental Shopping shop
Small business smallbiz Travel travel
Unemployment unempl

Table 1: Google domestic trends

Technical Part Technical analysis claims that useful information is already reflected in
stock prices. We selected a representative set of technical indicators to capture the volatility,
close location value, potential reversal, momentum and trend of each stock. Eight variables
are calculated for each company as listed in Table 2:

Variable Abbr.

Chaikin volatility ChaVol
Yang and Zhang Volatility historical estimator Vol

Arms’ Ease of Movement Value EMV
Moving Average Convergence/Divergence MACD

Money Flow Index MFI
Aroon Indicator AROON

Parabolic Stop-and-Reverse SAR
Close Location Value CLV

Table 2: Stock Technical Predictors
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• The ChaVol indicator depicts volatility by calculating the difference between the high
and low for each period or trading bar, and measures the difference between two
moving averages of a volume weighted accumulation distribution line.

• The Vol indicator has the minimum estimation error, and is independent of drift
and opening gaps, which can be interpreted as a weighted average of the Rogers and
Satchell estimator, the close-open volatility, and the open-close volatility.

• The EMV indicator is a momentum indicator developed by Richard W. Arms, Jr.,
which takes into account both volume and price changes to quantify the ease (or
difficulty) of price movements.

• The MACD indicator is a trading indicator used in stock prices’ technical analysis,
created by Gerald Appel in the late 1970s, supposed to reveal changes in the strength,
direction, momentum and duration of a trend in a stock’s price.

• The MFI indicator is a ratio of positive and negative money flow over time and starts
with the typical price for each period. It is an oscillator that uses both price and
volume to measure buying and selling pressure, created by Gene Quong and Avrum
Soudack.

• The AROON indicator is a technical indicator used to identify trends in an underlying
security and the likelihood that the trends will reverse, including “Aroon up” (resp.
“Aroon down”) for measurement of the strength of the uptrend (resp. downtrend),
and reports the time it takes for the price to reach the highest and lowest points over
a given time period.

• The SAR indicator is a method proposed by J. Welles Wilder, Jr., to find potential
reversals in the market price direction of traded goods such as securities.

• The CLV indicator is used to measure the closes quote relative to the day’s high and
low, which varies in range between −1 and +1.

4.3 Training Result

It is worth noting that all predictors do not show obvious trends and most of them are
stationary in the sense that their unit-root null hypotheses have p-values less than 0.05 in the
augmented Dickey-Fuller test (see Said and Dickey, 1984). However, some of them indicate
seasonal patterns. We can remove seasonal patterns of these predictors by subtracting the
estimated seasonal component computed by the STL procedure (see Cleveland et al., 1990).
Then we test our MBSTS model with and without deseasonalizing the predictors.

These eight technical predictors are calculated for each financial institution and then
exclusive to others. Domestic Google trends serve as common predictors available to all
companies. Based on the forecast output, the model trained without deseasonal predictors
performs better than the corresponding one with deseasonal predictors. Therefore, the
training results shown in Figure 8 are from a model with original predictors.
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Figure 8: True and fitted values of max log returns from 11/27/2006 to 10/20/2017 (BOA)

4.3.1 Decomposition of State Components

The business cycle describes the fluctuations in economic activities that an economy ex-
periences over a period of time. It typically involves shifts over time between periods of
expansions and recessions, which has a great impact on institutions in financial industry,
especially investment and commercial banks. We use BOA as an example to illustrate target
series and its corresponding state components. Visually checking the time series of max log
returns over the next five transaction days in Figure 8, we see strong fluctuations during
2008-2009, which is right after the outbreak of the subprime mortgage crisis. There is also
an obvious subsequent strong variation during 2012. Therefore, in order to capture recur-
rent economic shocks, it is necessary to incorporate the cyclical component in our model. In
fact, applying the trend-cycle model can capture both short-term and long-term movements
of the series.

By spectral analysis, we find the corresponding period equals 274, which is almost one
year of transaction days. Through cross validation, we find the optimal damping factor
equals 0.95 in terms of cumulative one-step prediction errors. Figure 9 shows how much
variation in the max log return time series is explained by the trend, cyclical and regression
components. The trend component shows the highest peak is around 2009, and provides a
general picture of how the series would evolve in the long run. The comparatively stronger
variation between 2009 and 2012 is reflected in the cyclical component, which captures the
economic shocks that occurred. The fluctuations gradually become stable as the effects
of shocks diminish. Both trend and cyclical components handle the series with unequal
variances over time. On the contrary, the regression component varies more frequently but
with no obvious peaks. It accounts for local movements without the impact of external
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(a) Trend Component

(b) Cyclical Component

(c) Regression Component

Figure 9: Contributions of state components to max log return (BOA). The fitted target
series is decomposed into three state components: (a) trend (local level in this
example) component, (b) cycle component and (c) regression component, with
shaded areas indicating the 90% confidence bands based on MCMC draws.

26



Multivariate Bayesian Structural Time Series Model

shocks. In sum, decomposing the target time series into three components provides us
enough information on how each component contributes in explaining variations.

4.3.2 Feature Selection

Thanks to the spike and slab regression, one advantage of the MBSTS model is that fea-
ture selection and model training can be done simultaneously, which prevents overfitting
and avoids redundant or spurious predictors. That is, the MBSTS model is flexible in that
it selects a different set of predictors for each target time series during the MCMC itera-
tions. Moreover, we can set a different model size for each target time series by assigning
appropriate values to the prior inclusion probabilities {πij}. The empirical posterior in-
clusion probability, as a useful indicator of the importance of one specific predictor, is the
proportion of number of times that the predictor is selected to the total count of MCMC
iterations. A higher inclusion probability indicates more variation of target time series can
be explained by that predictor, whose chance of being selected depends on equation (29).

Figure 10 displays the predictors whose empirical posterior inclusion probabilities are
greater than 0.2 for four companies. For the predictors with empirical inclusion probabilities
equal to one, we can see that Bank of America has seven, Capital One Financial Corporation
has eight, J.P. Morgan has four, and Wells Fargo has three. That is, the sets of predictors
are different among these four companies; hence, the expected model size for each company
also differs from each other. In general, sparsity was produced by our algorithm, and the size
of the resulting model for each company is much less that of the total number of candidate
predictors.

No such domestic Google trends contribute significantly to the variations of max log
returns for all companies. Different sets of domestic Google trends capture the variations of
max log returns of these four companies; more specifically, “mobile”, “constr” and “comput”
are the most important economic indicators for Bank of America, “unempl”, “rental”,
“furntr”, “finpln” and “comput” for Capital One Financial Corporation, “jobs” for J.P.
Morgan and Wells Fargo. Among all the technical predictors, MFI, EMV and CLV were
favored by the sampling algorithm for all companies, indicating the importance of these
predictors in explaining the variations of max log returns.

4.4 Target Series Forecast

Time series forecasting is challenging, especially when it comes to multivariate target time
series. One strength of our model is that it can make predictions for multiple target time
series (i.e. max log returns of a stock portfolio) with a great number of contemporaneous
predictors. Moreover, the Bayesian paradigm together with the spike-slab regression and
MCMC algorithm can further improve prediction accuracy through model averaging tech-
nique. Similar to the performance analysis on simulated data, we compared the MBSTS
model’s performance using real financial market data with three other benchmark mod-
els: BSTS, ARIMAX and MARIMAX, measured by cumulative one-step-ahead prediction
errors.
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(a) Bank of America Corp. (b) Capital One Financial Corp.

(c) JPMorgan Chase & Co. (d) Wells Fargo & Co.

Figure 10: Empirical posterior inclusion probabilities for the most likely predictors of max
log return. (a), (b), (c) and (d) display important predictors for BOA, COF,
JPM and WFC respectively. Each bars is colored (red or gray) according to the
sign (positive or negative) of the estimated value of the corresponding regression
coefficient.

4.4.1 Model Comparison

Figure 11 shows the cumulative one-step-ahead prediction errors of these four models with-
out and with deseasonalized predictors, respectively. We can see that the MBSTS model
outperforms other benchmark models with smaller cumulative prediction errors at almost
every step in these two cases. We can also see that models with original predictors out-
perform those using deseasonalized predictors. There are two obvious reasons to explain
why the MBSTS model is the best. Firstly, benefiting from the multivariate setting, it cap-
tures the inherent correlations of multiple target time series after subtracting the effects of
trend, seasonality and cycle components; these enables MBSTS to outperform the univari-
ate BSTS model that is trained by each target time series individually. Secondly, Bayesian

28



Multivariate Bayesian Structural Time Series Model

(a) All Predictors Without Deaseasonal (b) Partial Predictors With Deaseasonal

Figure 11: Performance analysis measured by cumulative one-step-ahead prediction errors:
(a) displays the result when all predictors are original; (b) shows the result
with some predictors with detected seasonality being deseasonalized. Other
three benchmark models (BSTS, ARIMAX and MARIMAX) were also trained
to make predictions.

model averaging helps avoid arbitrary selection and sticking to a fixed set of predictors, and
the cyclical component can capture dramatic shocks to variations in target time series with
diminishing impact, both of which enable our MBSTS model to outperform the MARIMAX
model.

4.4.2 Trading Strategy

In finance, a trading strategy is a set of objective rules defining the conditions that must
be met for a trade entry or exit action. Thanks to the strong prediction power, our model
can provide supplemental guidelines to trading, given the current information of domestic
Google trends and technical indexes. In other words, security strategists can decide when
and how to trade based on the predictions from the MBSTS model.

Figure 12 shows one-step-ahead predictions by the MBSTS model for these four com-
panies over two weeks. The shaded areas are the 40% prediction intervals generated by
draws from the posterior distribution of ŷ. All true values are covered by the prediction
intervals. The predicted value of max log return can be used as an indicator of whether to
trade a stock or not. For example, if the lower bound of the predicted max log return is a
large positive number, it is a strong signal that future prices will go substantially above the
closing price of that day, thus buying this stock that day should be seriously considered.
When the predicted value is positive but not large enough to cover transaction cost, it is a
weak buying signal and a second thought should be given before making a decision. Selling
or shorting the stock is suggested if the predicted max log return in the next five transaction
days, is negative.
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(a) Bank of America Corp. (b) Capital One Financial Corp.

(c) JPMorgan Chase & Co. (d) Wells Fargo & Co.

Figure 12: One-step-ahead predictions of max log returns: (a), (b), (c) and (d) display
predicted and true max log return values for BOA, COF, JPM and WFC, re-
spectively. Black lines with dots represent the true values, while red line with
dots indicate predicted values. The gray shaded areas are 40% prediction bands.

5. Conclusion

In this paper, we have proposed a Multivariate Bayesian Structural Time Series (MBSTS)
model for dealing with multiple target time series (e.g. max log returns of a stock port-
folio), which helps in feature selection and forecasting in the presence of related external
information. We evaluated the forecast performance of our model using both simulated
and empirical data, and found that the MBSTS model outperforms three other benchmark
models: BSTS, ARIMAX and MARIMAX. This superior performance can be attributed
mainly to the following three reasons. Firstly, the MBSTS model derives its strength in
forecasting from the fact that it incorporates information about other variables, rather than
merely historical values of its own. Secondly, the Bayesian paradigm and the MCMC algo-
rithm can perform variable selection at the same time as model training and thus prevent
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overfitting even if some spurious predictors are added into the candidate pool. Thirdly,
the MBSTS model benefits from taking correlations among multiple target time series into
account, which helps boost the forecasting power. Therefore, this model, as expected, is
able to provide more accurate forecasts than the univariate BSTS model and the traditional
time series models such as ARIMA or MARIMA, when multiple target time series need to
be modeled.

The excellent performance of the MBSTS model comes with high computation require-
ments in the MCMC iterations. Clearly, one would also not expect this model to show
significant advantages over the univariate BSTS model, when multiple target series are in-
dependent of each other. But some preliminary exploratory analysis as well as professional
insight would help to tell whether correlations in multiple target time series are strong
enough in specific cases. Two open questions that are currently under investigation in-
clude: whether and how prior information such as model size and estimated coefficients
can improve estimation accuracy and forecasting performance; the other is how to adjust
this model to satisfy the need of analysis of non-Gaussian observations. Overall, it is fair
to conclude that the MBSTS model offers practitioners a very good option to model or
forecast multiple correlated target time series with a pool of available predictors.
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